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ABSTRACT

The Kobe earthquake was one the most severe earthquakes in Japan in recent years. It occurred on January
16, 1995, at 20:46:49 (UTC) and measured 6.8 on the moment magnitude scale. In this paper, the time series
of the unbiased earth ground vertical acceleration collected by a seismograph located at the University of
Tasmania, Hobart, Australia, is analyzed. The time series is segmented into three consequent sub-series which
represent the normal seismic activity before the arrival of the earthquake, a transition phase, and the arrival
of earthquake waves. The analysis is separately performed for each segment. We show that by inspecting the
degradation of the prediction performance of the model identified based on the normal seismic activity data
set, it is possible to distinguish between the transition phase and normal seismic activity about 200-300 sec-
onds before the beginning of the earthquake phase. Though this does not mean that earthquakes can be fore-
casted, because of the significant data distortion due to the long distance between the epicenter and the data
collection location, nevertheless the achieved result may open up new routes in the study of earthquakes. 
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Análisis de la serie temporal del terremoto de Kobe
mediante técnicas de identificación de sistemas y detección de interrupciones

RESUMEN

El terremoto de Kobe fue uno de los sismos más severos ocurrido en Japón durante los últimos años. Ocurrió
el 16 de enero de 1995 a las 20:46:49 (TUC) y alcanzó 6.8 en la escala de magnitud local. En este trabajo se
analiza la serie temporal insesgada de la aceleración vertical del terreno registrada por un sismógrafo locali-
zado en la Universidad de Tasmania, en Hobart, Australia. La serie temporal se segmenta en tres sub-series
consecutivas que representan la actividad sísmica normal antes de la llegada del terremoto, una transición
de fase, y la llegada de las ondas sísmicas. El análisis se realiza de modo separado para cada segmento. Se
muestra como por la inspección de la degradación de la capacidad predictora del modelo identificado basa-
do en el conjunto de datos de la actividad sísmica normal, es posible distinguir entre la transición de fase y
la actividad sísmica normal en torno a 200-300 segundos antes del comienzo de la fase del terremoto. Aunque
esto no significa que los terremotos se pueden predecir, debido a la gran distorsión en los datos debido a la
gran distancia al epicentro y a la estación colectora de los datos, sin embargo el resultado alcanzado abre
nuevas rutas para el estudio de los terremotos.

Palabras clave: sismología, terremotos, predicción de series temporales, identificación de modelos, detección
de interrupciones. 

Introduction

The Kobe earthquake occurred on January 16, 1995,
at 20:46:49 (UTC) and measured 6.8 on the moment
magnitude scale. It was one of the most severe earth-
quakes in Japan in recent years.

In this paper, we analyze the time series of the
unbiased vertical acceleration in nm/s2 of the earth
ground collected by a seismograph located at the
University of Tasmania, Hobart, Australia, over a time
window including the arrival of seismic waves gener-
ated by the Kobe earthquake. To be precise, the meas-
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urements began at 20:56:51 (UTC), with a sampling
time T=1 s, and lasted for 3000 seconds (about 51
minutes). In the following, the time series will be
denoted by y(t), t=1, 2, ..., 3000. See Figure 1 for a plot
of y(t).

As is clear from the sudden change of the time
series amplitude, the seismic waves show up 1700
seconds after the beginning of data recording, that is,
at time 21:25:10 (UTC). The 40 minute delay with
respect to the earthquake occurrence is clearly due to
the 8600 km distance between Kobe and Hobart. It
results in a propagation speed of about 3580 m/s,
which is quite likely for seismic waves.

Because of the arrival of the seismic waves, visual
inspection reveals that the time series cannot be
thought of as a realization of a stationary stochastic
process (variance at least is time-varying). For this
reason, we decided to segment the time series into
three parts as shown in Figure 2.

The first segment for t=1, ..., 1200 is labelled as
“normal seismic activity”, since seismic waves have
not arrived yet, whilst the third segment for t=1601, ...,
3000 is labelled as “earthquake” for the very opposite
reason. The second segment for t=1201, ..., 1600,
instead, represents a “transition phase” between the
normal seismic activity and the earthquake phase.
Recalling that the time series is unbiased and hence
the mean of y(t) is equal to 0, the empirical variance
calculated over the second segment is 

Importantly enough, this variance has the same mag-
nitude as that registered during the normal seismic
activity, which is
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Figure 1.The time series y(t).
Figura 1. La serie temporal y(t).
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Hence, during the transition phase no oscillations
with a magnitude different from that of oscillations in
the normal seismic activity phase are perceived.
During the earthquake segment, instead, the variance
is

which is one order of magnitude bigger than that of
the previous segments.

The objective of this paper is to show that, though
the empirical variance is the same, the transition
phase and the normal seismic activity are radically
different in terms of the underlying generation mech-
anism. In fact, after performing model identification
over the normal seismic activity segment, we will
show that, by observing the degradation of the model

prediction capabilities, it is possible to discern
between the normal seismic activity and the transi-
tion phase in spite of the lack of variation of the ampli-
tude of oscillations. This opens up the possibility of
forecasting the subsequent earthquake phase in the
collected data.

The paper is organized as follows. Model identifi-
cation, including model order selection, of the normal
seismic activity segment is discussed in the section
Modelling the normal seismic activity segment, while
the Model validation section provides some model
validation over both the normal seismic activity seg-
ment and the earthquake segment. The Analysis of
the transition phase via fault detection techniques
section applies fault-detection techniques to the tran-
sition phase segment and shows that the degradation
of the prediction capabilities of the model identified in
the Modelling the normal seismic activity segment

Figure 2. Partition of the time series into three segments.
Figura 2. Partición de la serie temporal en tres segmentos.
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section permits us to discern the transition phase
from the normal seismic activity 200-300 seconds
before the beginning of the earthquake phase. Finally,
some conclusions are drawn in the Conclusions sec-
tion.

Modelling the normal seismic activity segment

Non-parametric statistical analysis was first per-
formed, see (Anderson, 1959), (Ljung, 1989),
(Brockwell and Davis, 2002), (Stoica and Moses,
2005), and (Bittanti, 2017). Figure 3 displays the peri-
odogram 

along with the empirical covariance function

and the partial correlation function parcor(k) for the
time series y(t) over the normal seismic activity seg-
ment. parcor(k) was calculated by means of the
Durbin-Levinson algorithm, see (Durbin, 1959). 

Being ĝg(t) and parcor(k) not null after a finite num-
ber of time lags, not even approximately, Figure 3
suggests modelling the time series in the normal seis-
mic activity segment as the realization of an ARMA
(na, nc) stochastic linear model:

(1)
(WN= white noise). 

For the fixed model orders na, nc, the model param-
eters are retrieved by means of standard Prediction
Error (PE) methods, (Ljung, 1989), (Sodestrom and
Stoica, 1989), (Box et al, 2016), and (Bittanti, 2017).
That is, letting q=[a1...ana c1...cnc]T, the optimal parame-
ter vector is obtained as the minimizer of the empiri-
cal prediction error variance:
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Figure 3. Non-parametric properties of g(t) over the normal seismic activity segment.
Figura 3. Propiedades no-paramétricas de g(t) sobre el segmento de actividad sísmica normal.
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(2)

where

is the 1-step optimal predictor for model in equation
(1). The value

can be actually computed based on classical quasi-
Newton algorithms, (Ljung, 1989), (Sodestrom and
Stoica, 1989), and (Bittanti, 2017). 

As for the optimal model orders, we resort to
Rissanen’s Minimum Description Length (MDL) indi-
cator, (Rissanen, 1978), (Grunwald, 2007), and
(Bittanti, 2017). To be precise, we let both na and nc

range from 1 up to 12, and compute 

for the various na and nc according to equation (2). For
each identified model parameter vector, the MDL indi-
cator is computed as

The optimal na, nc are those returning the lowest
value for MDL. 

The actually computed values for MDL are report-
ed in Figure 4, showing that the minimum is achieved
for na=7 and nc=9.

The identified model, corresponding to

is given by

(3)

Figure 4. MDL(na, nc) for na=1, ..., 12 and nc=1, ..., 12.
Figura 4. MDL(na, nc) for na=1, ..., 12 y nc=1, ..., 12.
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Figure 5 depicts the spectrum

of the ARMA stochastic process generated by (3).
This spectrum is in full agreement with the peri-

odogram in Figure 3. The poles (crosses) and zeros
(circles) of (3) are also reported in Figure 5.

Model validation

As recalled by the saying “the proof of the pudding is
in the eating”, model validation is performed to test
the model capabilities. Based on the model corre-
sponding to (3), the predictor 

can be computed. The left side of Figure 6 depicts y(t)
vs.

over the normal seismic activity segment, i.e. for t=1,
..., 1200. The corresponding prediction error

has empirical variance equal to

which is two order of magnitude smaller than the
empirical variance of y(t). 

The right side of Figure 6 depicts the correlation
coefficient

along with the 95 % confidence interval for the
Anderson’s whiteness test, (Anderson, 1959), (Ljung,
1989), and (Box et al, 2016). Since all the displayed
r̂e(t), t=1, ..., 24, are within the confidence interval, the
whiteness test is passed and 

can be presumed to be a white noise. Thus, the con-
clusion is drawn that the identified model is an accu-
rate and complete descriptor of the data generation
mechanism underlying the registered normal seismic
activity.

We then checked whether the obtained model is
also a good descriptor of the earthquake segment, for
t=1601, ..., 3000, or not.

A negative answer is quite immediate because
even both the plot of y(t), t=1601, ..., 3000, (Figure 7,
left) and that of the corresponding periodogram
(Fig.7, right) present features that are remarkably dif-
ferent from those of the same plots during normal
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Figure 5. Spectrum and poles and zeros of the identified stochastic model.
Figura 5. Espectro, polos y ceros del modelo estocástico identificado.
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seismic activity. Anyway, by applying the whiteness
test to the prediction error 

for t=1601, ..., 3000, the result shown in Figure 8 is
obtained.

This clearly reveals that the model corresponding
to (3) is not apt for describing the earthquake phase
and that earthquakes differ from the normal seismic
activity not only because of the amplitude of oscilla-
tions but also because a change of the underlying
data generation mechanism.

Figure 6. Left: y(t) (dashed line) vs.                            (continuous line). Right: Anderson’s whiteness test for the prediction error.
Figura 6. Izquierda: y(t) (línea discontínua) frente a                           . Derecha: test de aleatoriedad de Anderson para el error de predic-
ción.

Figure 7.The earthquake phase segment (left) along with the corresponding periodogram (right).
Figura 7. El segmento de la fase del terremoto (izquierda) así como su periodograma correspondiente (derecha).
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Analysis of the transition phase via fault detection
techniques

Given the results in the Model validation section, a
method for forecasting the earthquake phase in the
collected data is developed based on the degradation
of the prediction capabilities of model (3).

The idea is borrowed from the field of fault detec-
tion/fault diagnosis, (Hwang et al, 2010), and is easily
explained as follows. 

We have already seen that model (3), which, we
may recall, has been identified during the normal
seismic activity phase, is able to discern between the
normal seismic activity and the earthquake phase,
because in the first case the returned prediction error
is white (the whiteness test is passed) whilst in the
second case it is not (the whiteness test is failed). As
is clear, this property is not very useful because the
two segments are discerned by means of the varia-
tion of the amplitude of oscillations (as pointed out in
the introduction, there is a variation of one order of
magnitude between the empirical variance of the
time series in the first and in the third segment). The
transition phase, instead, presents oscillations whose
amplitude is close to that of oscillations in the normal
seismic activity. The question is whether the use of
model (3) permits us to discern the first and the sec-
ond segments or not.

To answer this question, we further divided the
transition phase segment into the four 100 seconds
long time windows as shown in Figure 9, and per-
formed the whiteness test to the prediction error
sequence
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Figure 8. Whiteness test for the earthquake phase.
Figura 8. Test de aleatoriedad para la fase del terremoto.

Figure 9.The transition phase segment and its further partition.
Figura 9. El segmento de transición de fase y su partición posterior.
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achieved for each time window. The results are shown
in Figure 10.

As is clear, the whiteness test is passed in just the
first time window (though the values of re(t) present a
suspicious regularity). The whiteness test is not
passed in the other time windows, and this becomes
clearer and clearer as the windows get closer to the
earthquake phase.

Conclusions

The results of the Analysis of the transition phase via
fault detection techniques section show that, in the
collected data, it is possible to discern the transition
phase from the normal seismic activity phase about
200-300 seconds before the beginning of the earth-

quake phase. This is achieved by looking at the degra-
dation of the prediction capabilities of the model
identified during the normal seismic activity phase
over the transition phase segment. In particular, a
whiteness test for the prediction error has been used
to this purpose. 

Clearly, the main limitation of this analysis is that
it is carried out on data collected in a location far
away from the earthquake epicenter, so that earth-
quake waves are registered after distortion due to the
propagation through the earth. This means that the
phenomenon studied by means of the available data
is quite different from that perceived in the proximity
of the earthquake’s epicentre, and thus the analysis
here reported in no way allows us to say that earth-
quakes can be forecasted. 

Nonetheless, we still believe that the achieved

Figure 10. Whiteness test for each time window in the transition segment.
Figura 10.Test de aleatoriedad para cada ventana temporal en el segmento de transición.
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result is interesting and that it may open up some fur-
ther developments in the study of earthquakes.
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